Read carefully

Calculators may <u>NOT</u> be used in this paper

Section A – Questions 1 – 20 (40 marks)

HB pencil

Section B (30 marks).

Read Carefully

Mathematics Higher (Section A) HB pencil

your name date of birth SCN

only one correct not answer sheet for Section A inside the front cover of your answer book Sample Question y = x - xx =_ pencil Α Α C D 8 c. - ") <u>د خ</u>یر ا Changing an answer D

FORMULAE LIST

Circle:

$$x + y + gx + fy + c = -g - f \sqrt{g + f - c}$$
$$x - a + y - b = r \qquad a b \qquad r$$

b

a

Scalar Product :
$$a \ b = |a||b| \quad \theta \qquad \theta \qquad a$$

 $a \ b = a \ b \ + a \ b \ + a \ b \qquad a = \begin{pmatrix} a \\ a \\ a \end{pmatrix} \qquad b = \begin{pmatrix} b \\ b \\ b \end{pmatrix}$
Trigonometric formulae: $\pm = \pm \pm + - = \pm \pm$

Table of standard derivatives :

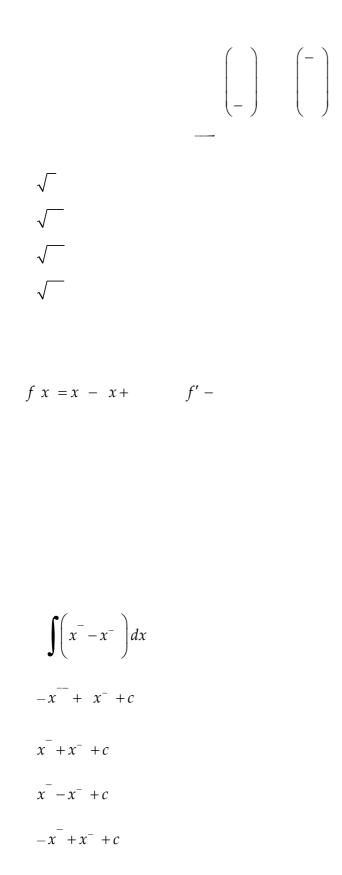

f x	<i>f' x</i>		
ax	a ax		
ax	-a ax		

Table of standard integrals :

f x	$\int f x dx$	
ax	${a}$ $ax+C$	
ax	$\frac{-}{a}$ $ax + C$	

SECTION A

ALL questions should be attempted.

$$f$$

$$f f x$$

$$f f x = x +$$

$$f f x = x +$$

$$f f x = x + x +$$

$$f f x = x + x +$$

$$\int \frac{\pi}{2} - \frac{\pi}{2}$$

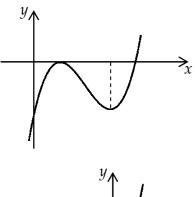
$$- \frac{\pi}{2}$$

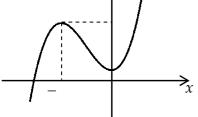
$$\int \sqrt{2}$$

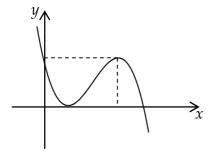
f x = x +

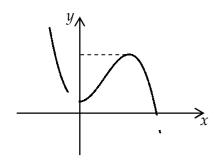
$$x - + y + =$$

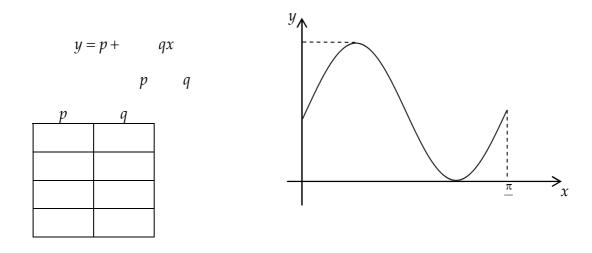
 $x - + y + =$
 $x + + y - =$
 $x + + y - =$

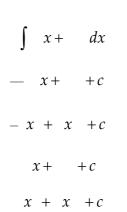

$$f x = x - x - x +$$


$$f x x +$$


_


y = f x



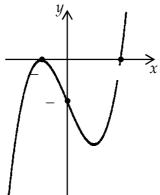


 $u_{n+} = - u_n$

$$f' x = x \qquad f = \qquad f x$$

$$f x = x -$$

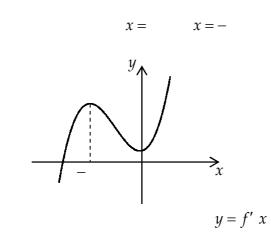
$$f x = x -$$

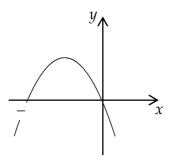

$$f x = x$$

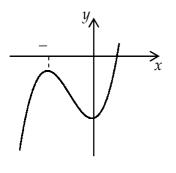
$$f x = x +$$

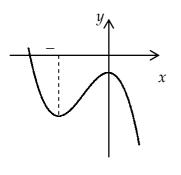
x

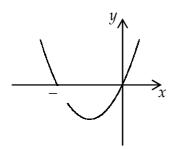
x + y - x + y - =


$$y = -x - x +$$
$$y = -x + x -$$
$$y = x - x +$$
$$y = x + x -$$

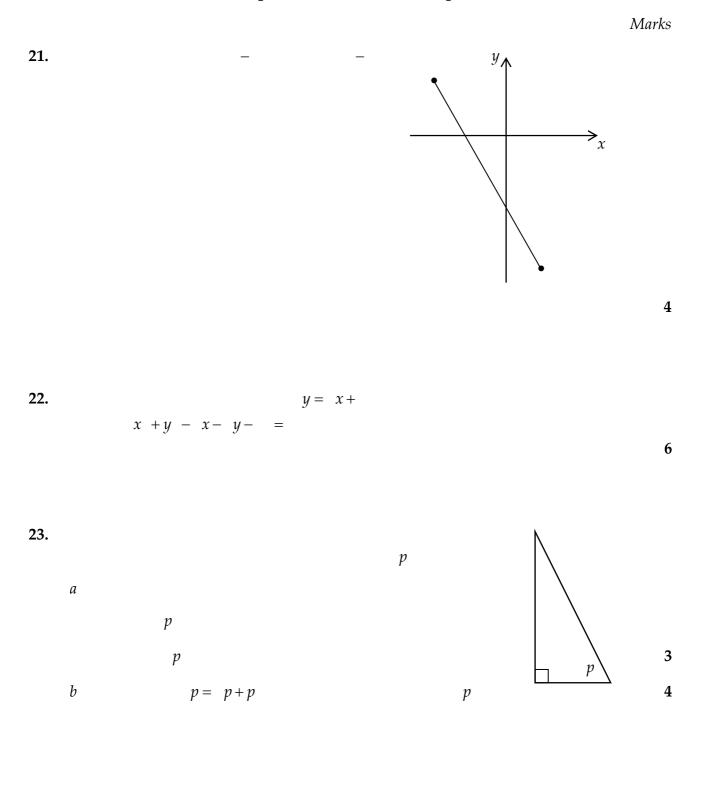

_


—


—

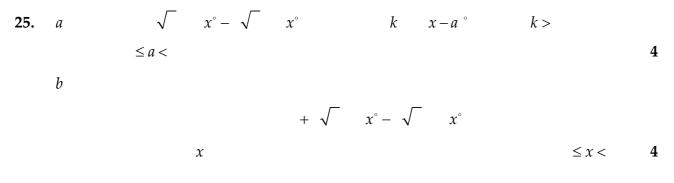

-

x + x -	x+p +q			q
_				
_				
-				
t - =	t			
_				
_				
$p = x^{-}$	p	x	<i>x</i> =	
-				
-				


- x - x < - < x < x < - x >x < - x >

- <*x* <

—


SECTION B

ALL questions should be attempted.

 $\begin{array}{cccc} \textbf{24.} \qquad f \qquad f \quad x = x - x - x + & \leq x \leq \\ & f \end{array}$

Marks

End of question paper

Mathematics Higher Paper 2 Practice Paper E

Time allowed 1 hour 10 minutes NATIONAL QUALIFICATIONS

Read carefully

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

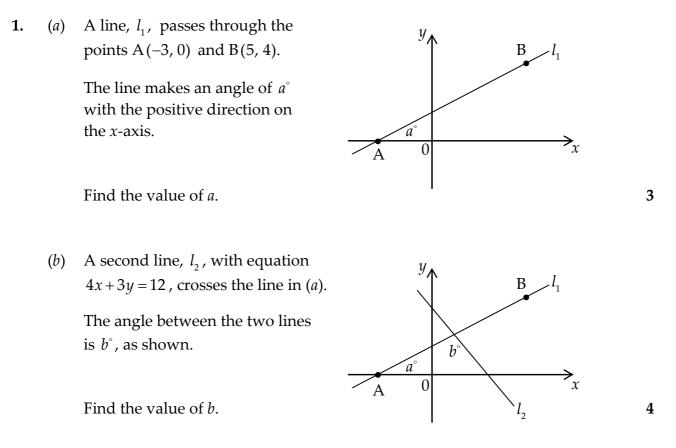
The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product : $a \cdot b = |a| |b| \cos \theta$, where θ is the angle between *a* and *b*.

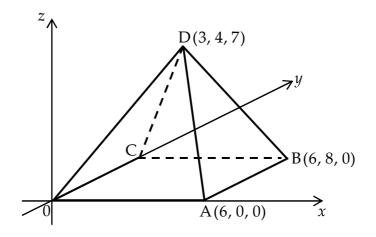
or
$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
, where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:
$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$
 $sin 2A = 2 sin A cos A$
 $cos 2A = cos^2 A - sin^2 A$
 $= 2 cos^2 A - 1$
 $= 1 - 2 sin^2 A$


Table of standard derivatives :

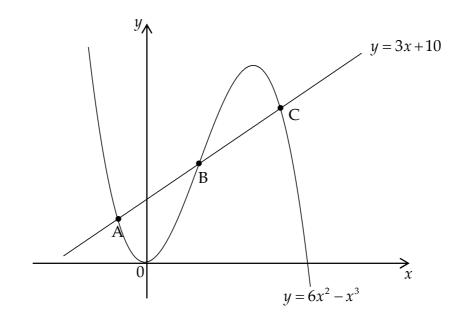
f(x)	f'(x)
sin ax	a cos ax
cos ax	$-a\sin ax$


Table of standard integrals :

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$

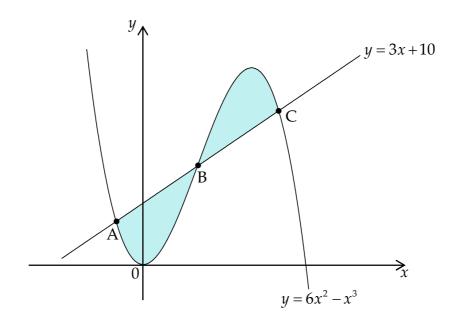
ALL questions should be attempted.

2. The rectangular based pyramid D,OABC has vertices A(6, 0, 0), B(6, 8, 0) and D(3, 4, 7).



- (*a*) (i) Write down the coordinates of C.
 - (ii) Express \overrightarrow{AC} and \overrightarrow{AD} in component form.
- (*b*) Calculate the size of angle CAD.

4


- 3. (a) (i) Show that (x-2) is a factor of $x^3 6x^2 + 3x + 10$.
 - (ii) Hence factorise $x^3 6x^2 + 3x + 10$ fully.

The line with equation y = 3x + 10 intersects the curve with equation $y = 6x^2 - x^3$ at the points A, B and C.

(*b*) Find the *x*-coordinates of the points A and C.

The area between the curve and the line from A to C is shaded in the diagram below.

(c) Calculate the total shaded area shown in the diagram.

Marks

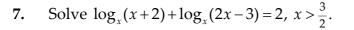
- 4. Solve $2\cos 2x \sin x + 1 = 0$ for $0 \le x < 2\pi$.
- 5. A new '24 hour anti-biotic' is being tested on a patient in hospital.

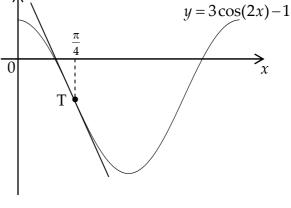
It is know, that over a 24 hour period, the amount of anti-biotic remaining in the bloodstream is reduced by 80%.

On the first day of the trial, an initial 250 mg dose is given to a patient at 7 a.m.

(*a*) After 24 hours and just prior to the second dose being given, how much anti-biotic remains in the patient's bloodstream?

The patient is then given a further 250 mg dose at 7 a.m. and at this time each subsequent morning thereafter.


(*b*) A recurrence relation of the form $u_{n+1} = au_n + b$ can be used to model this course of treatment.


Write down the values of *a* and *b*.

It is also known that more than 350 mg of the drug in the bloodstream results in unpleasant side effects.

- (c) Is it safe to administer this anti-biotic over an extended period of time?
- 6. The diagram shows part of the graph of $y = 3\cos(2x) 1$.

Find the equation of the tangent at the point T, where $x = \frac{\pi}{4}$.

7

5

1

2

- **8.** A circle has the following properties:
 - The *x*-axis and the line y = 20 are tangents to the circle.
 - The circle passes through the points (0,2) and (0,18).
 - The centre lies in the first quadrant.

Find the equation of this circle.

6

End of Question Paper

Paper 1

Section A

1.	С	11.	С
2.	В	12.	С
3.	D	13.	D
4.	В	14.	С
5.	В	15.	D
6.	С	16.	D
7.	А	17.	А
8.	С	18.	В
9.	С	19.	С
10.	А	20.	С

Section B

21. 3x - 5y - 7 = 0

22. Point of contact (-3, 4)

23. (a) (i)
$$\frac{1}{\sqrt{5}}$$
 (ii) $-\frac{3}{5}$
(b) $-\frac{11}{5\sqrt{5}}$

- 24. Maximum value 1, minimum value –7
- 25. (a) $4\cos(x-315)^{\circ}$
 - (b) Maximum value 7 at x = 315

Paper 2

1. (a) $a = 26 \cdot 6$ (b) $b = 100 \cdot 3$

2. (a) (i) C(0, 6, 0) (ii)
$$\overrightarrow{AC} = \begin{pmatrix} -6 \\ 6 \\ 0 \end{pmatrix}$$
 and $\overrightarrow{AD} = \begin{pmatrix} -3 \\ 4 \\ 7 \end{pmatrix}$

- (b) $54 \cdot 9^{\circ}$ or $0 \cdot 958$ radians
- 3. (a) (i) Proof (ii) (x-2)(x-5)(x+1)(b) A: x = -1 B: x = 5(c) $\frac{81}{2}$ square units

4.
$$\left\{0.848, 2.294, 4.712\left(\frac{3\pi}{2}\right)\right\}$$

5. (*a*) 50 mg

(b)
$$u_{n+1} = 0 \cdot 2u_n + 250$$

(c) $312 \cdot 5 < 350 \Rightarrow$ safe to administer long term

6.
$$6x + y - \frac{3\pi}{2} - 1 = 0$$

- 7. *x* = 2
- 8. $(x-6)^2 + (y-10)^2 = 100$