X100/701

NATIONAL QUALIFICATIONS 2005 FRIDAY, 20 MAY 1.00 PM - 4.00 PM

MATHEMATICS ADVANCED HIGHER

Read carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer all questions.
- 3. Full credit will be given only where the solution contains appropriate working.

Marks

Answer all the questions.

$$x + 2y - 4z = -11$$
.

[X100/701]

Page two

1

- 9. Given the equation $z + 2i\overline{z} = 8 + 7i$, express z in the form a + ib.
- 10. Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = \frac{1}{4} - \frac{1}{2(n+1)(n+2)}$$

State the value of $\lim_{n\to\infty} \sum_{r=1}^n \frac{1}{r(r+1)(r+2)}$.

11. The diagram shows part of the graph of $y = \frac{x^3}{x-2}$, $x \neq 2$.

(a) Write down the equation of the vertical asymptote.

(b) Find the coordinates of the stationary points of the graph of $y = \frac{x^3}{x-2}$.

(c) Write down the coordinates of the stationary points of the graph of $y = \left| \frac{x^3}{x-2} \right| + 1.$

12. Let $z = \cos \theta + i \sin \theta$.

- (a) Use the binomial expansion to express z^4 in the form u + iv, where u and v are expressions involving $\sin \theta$ and $\cos \theta$.
- (b) Use de Moivre's theorem to write down a second expression for z^4 .
- (c) Using the results of (a) and (b), show that

$$\frac{\cos 4\theta}{\cos^2 \theta} = p \cos^2 \theta + q \sec^2 \theta + r, \text{ where } -\frac{\pi}{2} < \theta < \frac{\pi}{2},$$

stating the values of p, q and r.

[Turn over for Questions 13, 14 and 15 on Page four

Page three

6

Marks

4

5

1

1

4

2

3

1

13. Express $\frac{1}{x^3 + x}$ in partial fractions.

Obtain a formula for I(k), where $I(k) = \int_{1}^{k} \frac{1}{x^{3} + x} dx$, expressing it in the form $U\left(\frac{a}{b}\right)$, where a and b depend on k.

Write down an expression for $e^{I(k)}$ and obtain the value of $\lim_{k\to\infty} e^{I(k)}$.

14. Obtain the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 20\sin x.$$
 7

Hence find the particular solution for which y = 0 and $\frac{dy}{dx} = 0$ when x = 0.

15. (a) Given
$$f(x) = \sqrt{\sin x}$$
, where $0 < x < \pi$, obtain $f'(x)$.

(b) If, in general, $f(x) = \sqrt{g(x)}$, where g(x) > 0, show that $f'(x) = \frac{g'(x)}{k\sqrt{g(x)}}$, stating the value of k. Hence, or otherwise, find $\int \frac{x}{\sqrt{1-x^2}} dx$.

(c) Use integration by parts and the result of (b) to evaluate

$$\sin^{-1/2} \sin^{-1} x \, dx.$$

[END OF QUESTION PAPER]

When you have given out the paper for Mathematics Advanced Higher, please draw the attention of the candidates to the following:

Page 4, Question 13, second line of second paragraph

The fraction, " $\frac{a}{b}$ ", at the beginning of the line should be replaced by " $\ln\left(\frac{a}{b}\right)$ ", so that the line reads

" $\ln\left(\frac{a}{b}\right)$, where *a* and *b* depend on *k*."

and not as printed.

Marks 4

4

2

3

1

2

3